Direito de imagemNIH/NATIONAL INSTITUTE OF MENTAL HEALTH Cientistas americanos inseriram um gif - cinco quadros de um cavalo correndo - no DNA de uma bactéria

O DNA tem o maior potencial de armazenamento de dados que se conhece: na teoria, é possível guardar até 455 exabytes (o equivalente a 100 bilhões de DVDs) em apenas um grama dele.

Agora, um grupo de cientistas conseguiu aproveitar esse potencial para guardar imagens e vídeos no DNA de bactérias E.coli com uma precisão de 90%.

A ideia é "programar" bactérias como equipamentos de gravação para que elas viajem pelo sangue e armazenem informações por um tempo. Depois disso, os cientistas poderiam extraí-las e examinar seu DNA para ver o que elas "anotaram". É como se esses organismos fizessem um filme de processos biológicos do corpo.
Holandês passa um mês sem álcool e açúcar e mostra o que acontece com corpo
Nada de tubarões ou cobras: 6 animais assassinos que você talvez não conheça

Por meio de uma ferramenta de edição de genoma conhecida como CRISPR, cientistas americanos inseriram um gif de cinco quadros de um cavalo correndo no DNA de uma bactéria. Algo semelhante a um processo de "copiar e colar".

A equipe então viu que os micróbios de fato incorporaram os dados como o previsto.

Os resultados foram publicados na revista Nature.
Transferência

Para o experimento, a equipe da Universidade Harvard usou uma imagem de uma mão humana e cinco quadros do cavalo Annie G, registrados no final do século 19 pelo pioneiro britânico da fotografia Eadweard Muybridge.

Para inserir essa informação nos genomas da bactéria, os pesquisadores transferiram a imagem e o vídeo nos nucleotídeos (blocos construtores do DNA), produzindo um código relacionado aos pixels de cada imagem.

Os pesquisadores então usaram a CRISPR, uma técnica de engenharia genética que permite que você "copie e cole" informações digitais diretamente no DNA de um organismo vivo - no caso do experimento com as bactérias E. coli, através de duas proteínas.

Direito de imagemSETH SHIPMAN
À esq., a imagem original, e à dir., a reconstituída no DNA da bactéria

As bactérias usam a versão "natural" dessa técnica (seu sistema de defesa) para guardar informações sobre os vírus que encontram. E esse funcionamento foi "hackeado" pelos cientistas para permitir uma edição mais ampla do genoma.

Como os dados são inseridos nos genomas das bactérias, eles são passados de geração para geração - o que pode provocar mutações também.

Os organismos armazenam uma informação seguida da outra, o que permite que se leia uma sequência de eventos na ordem em que eles foram coletados.

Cientistas já traduziram até sonetos de Shakespeare em DNA - mas esta é a primeira vez em que se cria uma "biblioteca viva" com essa técnica.
Quadro a quadro

Para fazer o gif, as sequências foram inseridas nas células das bactérias, quadro por quadro, durante cinco dias.

Os dados foram espalhados pelos genomas de várias bactérias, em vez de apenas uma, explica Seth Shipman, coautor do experimento.

"A informação não está contida em uma única célula, cada uma consegue ver apenas alguns pedaços do vídeo. O que tivemos que fazer foi reconstruir o vídeo inteiro a partir de partes diferentes", disse Shipman à BBC.

"Talvez uma única célula visse alguns pixels do primeiro quadro e alguns pixels do quadro quatro. Então tivemos que olhar para a relação de todos esses pedaços de informação nos genomas dessas células vivas e dizer: podemos reconstruir o vídeo inteiro com o passar do tempo?"

Para "ler" a informação de novo, os cientistas fizeram o sequenciamento do DNA da bactéria e usaram códigos customizados de computador para desembaralhar a informação genética, criando as imagens.

A equipe conseguiu uma precisão de 90%. "Nós ficamos muito felizes com o resultado", disse Shipman.
Gravadores vivos

No futuro, a equipe quer usar essa técnica para criar "gravadores moleculares".

Shipman diz que essas células podem "codificar informações sobre o que está acontecendo na célula e no ambiente celular ao escrever essa informação em seu próprio genoma".

É por isso que os pesquisadores usaram imagens e um vídeo: imagens porque elas representam o tipo de informação complexa que a equipe gostaria de usar no futuro, e o vídeo por causa do componente rítmico.

O ritmo é importante porque será útil acompanhar as mudanças em uma célula e em seu ambiente com o passar do tempo.

Talvez no futuro seja possível extrair bactérias e ver o que deu errado no corpo quando ficarmos doentes - como acontece com a caixa-preta de um avião que passou por uma pane.

Axact

Ronaldo

Blogueiro e livreiro, reproduzo as notícias que considero interessante para os amigos e disponíbilizo meu acervo de livros para possíveis cliente. Boa leitura e boas compras.

Poste aqui o seu comentário:

0 comments:

-Os comentários reproduzidos não refletem necessariamente a linha editorial do blog
-São impublicáveis acusações de carácter criminal, insultos, linguagem grosseira ou difamatória, violações da vida privada, incitações ao ódio ou à violência, ou que preconizem violações dos direitos humanos;
-São intoleráveis comentários racistas, xenófobos, sexistas, obscenos, homofóbicos, assim como comentários de tom extremista, violento ou de qualquer forma ofensivo em questões de etnia, nacionalidade, identidade, religião, filiação política ou partidária, clube, idade, género, preferências sexuais, incapacidade ou doença;
-É inaceitável conteúdo comercial, publicitário (Compre Bicicletas ZZZ), partidário ou propagandístico (Vota Partido XXX!);
-Os comentários não podem incluir moradas, endereços de e-mail ou números de telefone;
-Não são permitidos comentários repetidos, quer estes sejam escritos no mesmo artigo ou em artigos diferentes;
-Os comentários devem visar o tema do artigo em que são submetidos. Os comentários “fora de tópico” não serão publicados;